p-group, metabelian, nilpotent (class 3), monomial
Aliases: C42.367C23, C4⋊C4.239D4, C4⋊C4.90C23, C22⋊C4.79D4, C2.21(Q8○D8), (C4×C8).350C22, (C2×C4).335C24, (C2×C8).456C23, C4.SD16⋊40C2, C23.453(C2×D4), C4⋊Q8.110C22, (C2×Q8).91C23, C8○2M4(2)⋊38C2, C2.34(D4○SD16), C4.46(C4.4D4), (C2×D4).103C23, C8⋊C4.168C22, C23.38D4⋊36C2, (C22×C8).462C22, C4.4D4.32C22, C22.595(C22×D4), C42.C2.16C22, D4⋊C4.132C22, C23.41C23⋊7C2, (C22×C4).1033C23, Q8⋊C4.203C22, C23.24D4.12C2, C23.36D4.14C2, C22.16(C4.4D4), (C22×Q8).301C22, C42.78C22⋊26C2, C42.28C22⋊30C2, C42.30C22⋊17C2, C42⋊C2.140C22, (C2×M4(2)).372C22, C23.38C23.13C2, C4.44(C2×C4○D4), (C2×C4).137(C2×D4), (C2×Q8⋊C4)⋊58C2, C2.46(C2×C4.4D4), (C2×C4).490(C4○D4), (C2×C4⋊C4).625C22, (C2×C4○D4).150C22, SmallGroup(128,1869)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C22 — C42⋊C2 — C42.367C23 |
Generators and relations for C42.367C23
G = < a,b,c,d,e | a4=b4=1, c2=b2, d2=a2b-1, e2=a2b2, ab=ba, cac-1=a-1b2, ad=da, eae-1=ab2, cbc-1=b-1, bd=db, be=eb, dcd-1=bc, ece-1=a2b2c, de=ed >
Subgroups: 340 in 186 conjugacy classes, 92 normal (38 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C2×C8, M4(2), C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C2×Q8, C4○D4, C4×C8, C8⋊C4, D4⋊C4, D4⋊C4, Q8⋊C4, Q8⋊C4, C2×C4⋊C4, C42⋊C2, C22⋊Q8, C22.D4, C4.4D4, C42.C2, C42.C2, C4⋊Q8, C4⋊Q8, C22×C8, C2×M4(2), C22×Q8, C2×C4○D4, C8○2M4(2), C2×Q8⋊C4, C23.24D4, C23.36D4, C23.38D4, C4.SD16, C42.78C22, C42.28C22, C42.30C22, C23.38C23, C23.41C23, C42.367C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C4.4D4, C22×D4, C2×C4○D4, C2×C4.4D4, D4○SD16, Q8○D8, C42.367C23
(1 23 11 43)(2 24 12 44)(3 17 13 45)(4 18 14 46)(5 19 15 47)(6 20 16 48)(7 21 9 41)(8 22 10 42)(25 51 39 62)(26 52 40 63)(27 53 33 64)(28 54 34 57)(29 55 35 58)(30 56 36 59)(31 49 37 60)(32 50 38 61)
(1 9 5 13)(2 10 6 14)(3 11 7 15)(4 12 8 16)(17 43 21 47)(18 44 22 48)(19 45 23 41)(20 46 24 42)(25 37 29 33)(26 38 30 34)(27 39 31 35)(28 40 32 36)(49 58 53 62)(50 59 54 63)(51 60 55 64)(52 61 56 57)
(1 43 5 47)(2 18 6 22)(3 41 7 45)(4 24 8 20)(9 17 13 21)(10 48 14 44)(11 23 15 19)(12 46 16 42)(25 62 29 58)(26 54 30 50)(27 60 31 64)(28 52 32 56)(33 49 37 53)(34 63 38 59)(35 55 39 51)(36 61 40 57)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 60 15 53)(2 61 16 54)(3 62 9 55)(4 63 10 56)(5 64 11 49)(6 57 12 50)(7 58 13 51)(8 59 14 52)(17 29 41 39)(18 30 42 40)(19 31 43 33)(20 32 44 34)(21 25 45 35)(22 26 46 36)(23 27 47 37)(24 28 48 38)
G:=sub<Sym(64)| (1,23,11,43)(2,24,12,44)(3,17,13,45)(4,18,14,46)(5,19,15,47)(6,20,16,48)(7,21,9,41)(8,22,10,42)(25,51,39,62)(26,52,40,63)(27,53,33,64)(28,54,34,57)(29,55,35,58)(30,56,36,59)(31,49,37,60)(32,50,38,61), (1,9,5,13)(2,10,6,14)(3,11,7,15)(4,12,8,16)(17,43,21,47)(18,44,22,48)(19,45,23,41)(20,46,24,42)(25,37,29,33)(26,38,30,34)(27,39,31,35)(28,40,32,36)(49,58,53,62)(50,59,54,63)(51,60,55,64)(52,61,56,57), (1,43,5,47)(2,18,6,22)(3,41,7,45)(4,24,8,20)(9,17,13,21)(10,48,14,44)(11,23,15,19)(12,46,16,42)(25,62,29,58)(26,54,30,50)(27,60,31,64)(28,52,32,56)(33,49,37,53)(34,63,38,59)(35,55,39,51)(36,61,40,57), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,60,15,53)(2,61,16,54)(3,62,9,55)(4,63,10,56)(5,64,11,49)(6,57,12,50)(7,58,13,51)(8,59,14,52)(17,29,41,39)(18,30,42,40)(19,31,43,33)(20,32,44,34)(21,25,45,35)(22,26,46,36)(23,27,47,37)(24,28,48,38)>;
G:=Group( (1,23,11,43)(2,24,12,44)(3,17,13,45)(4,18,14,46)(5,19,15,47)(6,20,16,48)(7,21,9,41)(8,22,10,42)(25,51,39,62)(26,52,40,63)(27,53,33,64)(28,54,34,57)(29,55,35,58)(30,56,36,59)(31,49,37,60)(32,50,38,61), (1,9,5,13)(2,10,6,14)(3,11,7,15)(4,12,8,16)(17,43,21,47)(18,44,22,48)(19,45,23,41)(20,46,24,42)(25,37,29,33)(26,38,30,34)(27,39,31,35)(28,40,32,36)(49,58,53,62)(50,59,54,63)(51,60,55,64)(52,61,56,57), (1,43,5,47)(2,18,6,22)(3,41,7,45)(4,24,8,20)(9,17,13,21)(10,48,14,44)(11,23,15,19)(12,46,16,42)(25,62,29,58)(26,54,30,50)(27,60,31,64)(28,52,32,56)(33,49,37,53)(34,63,38,59)(35,55,39,51)(36,61,40,57), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,60,15,53)(2,61,16,54)(3,62,9,55)(4,63,10,56)(5,64,11,49)(6,57,12,50)(7,58,13,51)(8,59,14,52)(17,29,41,39)(18,30,42,40)(19,31,43,33)(20,32,44,34)(21,25,45,35)(22,26,46,36)(23,27,47,37)(24,28,48,38) );
G=PermutationGroup([[(1,23,11,43),(2,24,12,44),(3,17,13,45),(4,18,14,46),(5,19,15,47),(6,20,16,48),(7,21,9,41),(8,22,10,42),(25,51,39,62),(26,52,40,63),(27,53,33,64),(28,54,34,57),(29,55,35,58),(30,56,36,59),(31,49,37,60),(32,50,38,61)], [(1,9,5,13),(2,10,6,14),(3,11,7,15),(4,12,8,16),(17,43,21,47),(18,44,22,48),(19,45,23,41),(20,46,24,42),(25,37,29,33),(26,38,30,34),(27,39,31,35),(28,40,32,36),(49,58,53,62),(50,59,54,63),(51,60,55,64),(52,61,56,57)], [(1,43,5,47),(2,18,6,22),(3,41,7,45),(4,24,8,20),(9,17,13,21),(10,48,14,44),(11,23,15,19),(12,46,16,42),(25,62,29,58),(26,54,30,50),(27,60,31,64),(28,52,32,56),(33,49,37,53),(34,63,38,59),(35,55,39,51),(36,61,40,57)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,60,15,53),(2,61,16,54),(3,62,9,55),(4,63,10,56),(5,64,11,49),(6,57,12,50),(7,58,13,51),(8,59,14,52),(17,29,41,39),(18,30,42,40),(19,31,43,33),(20,32,44,34),(21,25,45,35),(22,26,46,36),(23,27,47,37),(24,28,48,38)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | ··· | 4O | 8A | 8B | 8C | 8D | 8E | ··· | 8J |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 8 | 8 | 8 | 8 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 8 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 8 | ··· | 8 | 2 | 2 | 2 | 2 | 4 | ··· | 4 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | C4○D4 | D4○SD16 | Q8○D8 |
kernel | C42.367C23 | C8○2M4(2) | C2×Q8⋊C4 | C23.24D4 | C23.36D4 | C23.38D4 | C4.SD16 | C42.78C22 | C42.28C22 | C42.30C22 | C23.38C23 | C23.41C23 | C22⋊C4 | C4⋊C4 | C2×C4 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 8 | 2 | 2 |
Matrix representation of C42.367C23 ►in GL6(𝔽17)
13 | 8 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 13 | 0 |
0 | 0 | 0 | 0 | 0 | 13 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 16 | 0 |
13 | 8 | 0 | 0 | 0 | 0 |
13 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 13 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 13 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 3 | 0 | 0 |
0 | 0 | 14 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 3 |
0 | 0 | 0 | 0 | 14 | 3 |
4 | 9 | 0 | 0 | 0 | 0 |
0 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 13 | 0 |
0 | 0 | 0 | 0 | 0 | 13 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
G:=sub<GL(6,GF(17))| [13,0,0,0,0,0,8,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,13,0,0,0,0,0,0,13],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0],[13,13,0,0,0,0,8,4,0,0,0,0,0,0,13,0,0,0,0,0,0,4,0,0,0,0,0,0,13,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,3,14,0,0,0,0,3,3,0,0,0,0,0,0,3,14,0,0,0,0,3,3],[4,0,0,0,0,0,9,13,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,13,0,0,0,0,0,0,13,0,0] >;
C42.367C23 in GAP, Magma, Sage, TeX
C_4^2._{367}C_2^3
% in TeX
G:=Group("C4^2.367C2^3");
// GroupNames label
G:=SmallGroup(128,1869);
// by ID
G=gap.SmallGroup(128,1869);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,448,253,232,758,100,1018,2804,172,4037,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^4=1,c^2=b^2,d^2=a^2*b^-1,e^2=a^2*b^2,a*b=b*a,c*a*c^-1=a^-1*b^2,a*d=d*a,e*a*e^-1=a*b^2,c*b*c^-1=b^-1,b*d=d*b,b*e=e*b,d*c*d^-1=b*c,e*c*e^-1=a^2*b^2*c,d*e=e*d>;
// generators/relations